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shear strength parameters for use in soil-structure interaction analyses involving
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reconstituted specimens to evaluate the importance of the structure/cementation on

the stress-strain behavior and anisotropy of silts. Triaxial compression tests were
conducted on structured/cemented and reconstituted specimens at the natural
degree of saturation and after laboratory saturation to investigate the effect of
saturation on the drained stress-strain behavior of silts. In addition, unload/reload
triaxial compression tests were conducted to estimate the unload/reload modulus
and the effect of unloading/reloading on the degradation of the
structure/cementation of silt.
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Units of Measurement

’ Conversion Factors, Non-SI to SI

Non-SI units of measurement used in this report can be converted to SI units as

follows:

Multiply By To Obtain

acre-feet 1,233.489 cubic meters

cubic feet per second 0.02831685 cubic meters per second
cubic yards 0.7645549 cubic meters

cubic feet 0.2831685 cubic meters

square feet 0.092903 square meters

square inches 6.4516 square meters

feet 0.3048 meters

inches 2.54 centimeters

miles 1.609347 kilometers

nautical miles 1.852 kilometers

pounds (mass) 0.4535924 kilograms

pounds (mass) per cubic foot 16.01846 kilograms per cubic meter
pounds (force) per square foot 0.04788 kilopascals

tons (force) per square foot 95.76 kilopascals
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| Introduction

Background

The finite element method provides a powerful technique for the analysis of stresses
and movements in earth masses, and it has been applied to a variety of soil-structure
interaction problems. The results of soil stress-deformation analyses are controlled by
the stress-strain characteristics of the soil being modeled. Modeling the stress-strain
characteristics of soils is extremely complex because the behavior of soil is nonlinear,
inelastic, and highly dependent on the magnitude of the stresses in the soil.

The hyperbolic stress-strain relationships developed by Duncan and Chang (1970)
provide a simple model that encompasses the most important characteristics of soil
stress-strain behavior using data from conventional laboratory tests. Due to its
simplicity, applicability to drained and undrained problems, and the availability of a
data base of hyperbolic stress-strain parameters, the hyperbolic stress-strain model is
frequently used in soil-structure interaction problems (Ebeling et al. 1992b; Kuppusamy
- et al. 1994). The model has been successfully applied to embankment dams (Duncan et
al. 1982), open excavations (Chang 1969), retaining walls (Duncan et al. 1990; Ebeling
et al. 1990; Ebeling et al. 1992a), braced excavations (Mana and Clough 1981), lock
and dam structures (Clough and Duncan 1969; Ebeling et al. 1993), and a variety of
soil-structure interaction problems (Ebeling 1990), such as compaction-induced earth
pressures (Seed and Duncan 1986).

The data base of drained and undrained hyperbolic parameters for approximately 135
different soils was assembled by Duncan et al. (1978 and 1980) and has been extremely
useful for:

a. Judging the reliability of parameter values determined from laboratory test
data.

b. Determining the effects of various factors that influence the values of the
parameters.

c. Estimating values of the parameters when insufficient data are available for
their determination.
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The soil types included in the data base range from clays to gravels. However,
hyperbolic parameters and shear strength parameters for silts and clayey silts have not
been adequately defined in the data base or the professional literature. As a result, the
summary table presented by Duncan et al. (1978) (see Table 1) does not include
hyperbolic or shear strength parameters for silts or clayey silts.

Purpose and Scope

Due to the limited information available on the drained hyperbolic and shear
strength parameters of silts, the main objectives of this research are to:

a. Investigate the effects of natural structure/cementation on the drained stress-
strain behavior of a naturally occurring structured silt deposit.

b. Characterize the drained stress-strain behavior of natural structured/cemented
silt.

¢. Determine the appropriate drained hyperbolic stress-strain and Mohr-Coulomb
strength parameters for natural structured/cemented silt.

d. Apply the research objectives described above to reconstituted samples of the
naturally occurring silt. A comparison of the test results on reconstituted and
structured/cemented silt specimens will quantify the effect of
structure/cementation on the stress-strain behavior and shear strength of silts.

e. Determine the effect of laboratory saturation on the drained stress-strain
behavior of silts.

/. Investigate the effect of unloading/reloading on the degradation of the
structure/cementation of naturally occurring silt.

& Estimate the anisotropy of the structure/cementation by conducting tests on
cemented specimens trimmed 90 degrees from the field orientation.

2 Chapter 1 Introduction




Table 1 _

Summary of Iggerbolic Stress-Strain Parameters (from Duncan et al. 1978)

Unified RC !

Soil Stand. :

Classific- | AASHTO |yal | éo(Ad) c

cation % wit3 | deg k2 |K n Rg Ky m

GW,GP 105 0.150 | 42(9) 0 600 0.4 0.7 175 02

SW&SP 100 0.145 | 39(D) 0 450 0.4 0.7 125 0.2
95 0.140 | 36(5) 0 300 0.4 0.7 75 02
90 0.135 |33(3) 0 200 0.4 0.7 50 0.2

SM 100 0.135 36(8) 0 600 0.25 0.7 450 0.0
95 0.130 | 34(6) 0 450 0.25 0.7. 350 0,0
90 ‘,0.125 32(4) 0 300 0.25 0.7 250 0,0
85 0.120 | 30(2) 0 150 0.25 0.7 150 0.0

SM-SC 100 '0.135 33(0) 0.5 400 0.6 0.7 200 0.5
95 .0.130 | 33(0) 0.5 200 0.6 0.7 100 0.5
90 0.125 | 33(0) 0.3 150 0.6 0.7 75 0.5
85 '0.120 | 33(0) 0.2 100 0.6 0.7 50 0.5

CL 100 0.135 | 30(0) 0.4 150 0.45 0.7 140 0.2
95 0.130 | 30(0) 0.3 120 0.45 0.7 110 0.2
90 0.125 | 30(0) 0.2 90 0.45 0.7 80 0.2
85 0.120 | 30(0) 0.1 60 0.45 0.7 50 0.2

1 A table of factors for converting non-SI units of measurement to SI is presented on page Xiii.

The resulting information on the behavior of structured/cemented silt was used to
develop a data base of drained hyperbolic stress-strain and Mohr-Coulomb strength

parameters for structured/cemented silt.
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2 Hyperbolic' Stress-
Strain Model

Stiffness Parameters

Duncan et al. (1980) provides an extensive derivation of the hyperbolic
stress-strain model and a detailed procedure for determining the values of the
hyperbolic stress-strain parameters from conventional triaxial tests. Asa result,
only the major features of the stress-strain model will be described in this
introduction in order to define the various hyperbolic stress-strain parameters.

The hyperbolic model represents the nonlinear stress-strain curve of soils
using a hyperbola as shown in Figure 1. Transforming the hyperbolic equation
results in a linear relationship between €/(c"; - 6'3) and &, where ¢ is the axial
strain and (0'; - 6'3) is the effective deviator stress. The stress-dependent
stress-strain behavior of soil is represented by varying the initial tangent
modulus, E;, and the ultimate deviator stress, (G'; - G'3)u, With the effective
confining pressure, ¢'s. Figure 1 shows that the ultimate deviator stress is the
asymptotic value of the deviator stress and is related to the compressive strength
of the soil. The variation of the initial tangent modulus with confining pressure
is represented by an empirical equation proposed by Janbu (1963):

E, =Kpa(fij 1)
D

a

where K is the modulus number, 7 is the modulus exponent, and p, is the
atmospheric pressure in the same units as ¢'; and E; (e.g8., 2116.2 psf or 101.3
kPa).
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Figure 1. Hyperbolic representation of a stress-strain curve
(from Duncan et al. 1980)
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The variation of E; with ¢'; is linear when the logarithms of (E;/p,) and
(6'3/py) are plotted against each other. The modulus number equals (Ei/pa)
when 6'3/p, equals unity and n is the slope of the resulting line.

The variation of ultimate deviator stress with ¢'s is accounted for by relating
(6'1 - 6'3)u to the stress difference at failure, (c'; - 6'3);, and using the Mohr-
Coulomb strength equation to relate (¢'; - 6'3); to 6's. The criterion used to
define (c'; - ©'3)yis usually the maximum deviator stress. However, the
criterion that results in the best approximation of the actual stress-strain curve
should be used. The values of (¢'; - '3),; and (o' - 6'3)yare related by:

(Gi-a2), =R, (o1 -2), o

in which Ry is the failure ratio as shown in Figure 1. The value of Ryis always
less than or equal to unity and varies from 0.5 to 0.9 for most soils. The
variation of (¢'; - 6'3); with ¢'3 can be expressed as follows using the Mohr-
Coulomb strength equation:

C L (Zc' cosg +20, sin¢')
(0'1 B 63)/’ - (1— sin ¢') )

in which c' and ¢' are the effective stress Mohr-Coulomb cohesion intercept and
friction angle, respectively.

By differentiating the equation of the hyperbola shown in Figure 1 with

respect to the axial strain and substituting the expression into Equations (1), (2),
and (3), an expression for the tangent modulus, E;, can be obtained:

2

4)

E = Kpa(g—.‘j—]n{p R,(1-sing)o} - 7))

P (2c' cos¢ +20, sin ¢')
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This equation can be used to calculate the value of E; for any stress condition
if the hyperbolic parameters X, n, and R;and the Mohr-Coulomb shear strength
parameters, ¢' and ¢', are known. Alternatively, Equation (4) may be
presented as: ‘

E, =E(1-5,*R,) ®)
where the mobilized shear strength is equal to the stress level, S,

s _loi=5)
o),

(6)

Volume Change Parameters

The hyperbolic stress-strain model accounts for the nonlinear volume change
behavior of soils by assuming that the bulk modulus is independent of stress
level, (¢'; - 6'3), and that it varies with confining pressure. The variation of
bulk modulus, B, with confining pressure is approximated by the following
equation:

B=K,p, (“—) @
p

a

where K, is the bulk modulus number and m is the bulk modulus exponent.
The variation of B is linear when the logarithm of (B/p,) and the logarithm
(c's/p,) are plotted against each other. The bulk modulus number equals (B/p,)
when (6's/p,) equals unity and m is the slope of the resulting line.
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Unload/Reload Parameters

If a triaxial specimen is unloaded at some stage during a test, the stress-
strain relationship followed during unloading is steeper than the curve followed
during primary loading, as shown in Figure 2. If the specimen is subsequently
reloaded, the stress-strain relationship followed is also steeper than the primary

- loading relationship and is quite similar to the unloading relationship. Thus, the

soil behavior is inelastic because the strains occurring during primary loading
are only partially recoverable upon unloading. On subsequent reloading there is
always some hysteresis, but it is usually accurate to approximate the behavior
during unloading and reloading as linear and elastic. As a result, the same
value of unloading-reloading modulus, E,,, is used for both unloading and
reloading. E,, is related to the confining pressure by the following equation:

E,=K,p, (f—] ®)
D

a

In this equation, K,, is the unloading-reloading modulus number. K, is always
greater than K (for primary loading). K, may be 20 percent greater than K for
stiff soils such as dense sands. For soft soils such as loose sands, K,, may be

 three times greater than K. If the zones undergoing unloading and/or reloading

are not large and do not have a dominant effect on the results of the analysis,
assuming a value of K, within the range of 1.2 to 3 times the modulus number
is probably sufficiently accurate. The value of n is similar for primary loading
and unloading, and in the hyperbolic model it is assumed to be the same.

In summary, the nonlinear stress-strain relationship is approximated by a
series of straight lines using an incremental stress analysis. The value of the
tangent modulus at any stress is determined twice using Eq. (4) during each
increment. The unloading-reloading stress-strain curve is assumed to be linear
and elastic and thus represented by one modulus, E,,, expressed by Eq. (8). In
the calculations, the stress condition is determined to be unloading or reloading
by comparing the stress level before and after the load increment.

Chapter 2 Hyperbolic Stress-Strain Model 9




(0} - 03)

Figure 2. Unloading-Reloading Modulus
(from Duncan et al. 1980)

Nonlinear Stress-Strain Response of Soil Using
SOILSTRUCT

The constitutive relationship used for all two-dimensional finite elements in
SOILSTRUCT (Ebeling et al. 1992b) is Hooke's law. SOILSTRUCT uses an
incremental, equivalent linear method of analysis to model nonlinear material
behavior. In this type of analysis, incremental changes in stresses are related to
the incremental strains through a linear relationship. This relationship is
defined for each element by two engineering constants, Young's modulus and
the bulk modulus.

A plane strain, isotropic drained or undrained stress-strain model is
incorporated within SOILSTRUCT. The computer program uses a nonlinear

10 Chapter 2 Hyperbolic Stress-Strain Model




stress-dependent hyperbolic curve to represent the relationship between stress-

strain response during primary loading of the soil (Figure 1) and a linear stress-
strain response during unloading or reloading of the soil (Figure 2). The
unload-reload stress-strain response is applicable when the current (deviator)
stress state is less than that which has been applied previously. Otherwise, the
primary loading stress-strain curve is appropriate.

The nonlinear soil response to loading is modeled by performing a series of
analyses in which each load is applied incrementally, with the total change in
stress computed at the center of each soil element being equal to the sum of the
incremental changes in stress over all of the load steps (Ebeling et al. 1992b).
In general, the greater the curvature of the stress-strain relationship or the
greater the magnitude of the applied load, the greater the number of load steps
required to accurately model the nonlinear soil response. This may be achieved
in two ways using SOILSTRUCT: either the total load approach using a greater
number of incremental loadings, or the substep approach. Under the substep
approach during the course of each load case analysis, the load vector may be
applied in a series of increments.

Application of each loading in the finite element analysis results in a change
in stress within each of the soil elements. In addition to the change in stress,
there is a corresponding change in stiffness. Since each incremental analysis is
performed assuming equivalent linear element response, SOILSTRUCT updates
the value of the elastic moduli assigned to each soil element using Equation (4)
during primary loading or Equation (8) during unloading and reloading. The
bulk modulus is computed for each soil element using Equation (7). To account
for the change in stiffness that occurs during the application of a load
increment, each incremental load calculation may be repeated using the iteration
option. When the iteration option is invoked, the load vector is reapplied with a
revised value for the element stiffness. The value assigned for the stiffness of
the soil element reflects the average of the stress state developing at the end of
the previous load case, or substep, and that which develops during the current
iteration. However, when only one iteration is specified, the modulus values
are calculated using the stresses developing at the end of the previous load
increment. Upon completion of the last iteration for each load case or substep,

Chapter 2 Hyperbolic Stress-Strain Model 11




the arrays tabulating the values of the total nodal point displacements and total
element stresses are updated with the computed incremental values.
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3 Results of Previous
Research Using Silt

Background

The research described herein is a continuation of two previous research
projects with the Information Technology Laboratory at WES. The first project
evaluated the hyperbolic stress-strain parameters of reconstituted silt-clay
mixtures. The results of this study are described by Stark et al. (1991). A
technical paper summarizing the drained and undrained stress-strain behavior
and hyperbolic parameters of normally consolidated silt-clay mixtures was
published in the February, 1994, issue of the Journal of Geotechnical
Engineering published by the American Society of Civil Engineers (Stark et al.
1994). The second project evaluated the anisotropy of naturally occurring
structured/cemented silt. Anisotropy was evaluated by conducting tests on
structured/cemented specimens trimmed 90 degrees from the field orientation.

- The results of the study are described by Stark et al. (1995). '

Silt Origin

The silt tested during the first phase of the study was excavated from a 40-ft-
high bluff composed of Mississippi loess at the WES. The location of the bluff
is shown on the information map of WES in Figure 3. The undisturbed loess is
highly structured/cemented, which allows the 40-ft-high bluff to maintain a
nearly vertical face. Because the loess was excavated from the bluff using a
pick and shovel, the natural structure/cementation of the soil was destroyed
during sampling. Confining pressures of 5 to 16 tsf were used to consolidate
the reconstituted silt-clay mixtures to ensure that the specimens were normally
consolidated prior to shear. The specimens were reconstituted by mixing
various percentages of kaolinite and montmorillonite with the purified silt. The
natural silt was purified using a sedimentation process to remove the naturally
occurring clay size particles. Therefore, the quantity and composition of the
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clay-silt mixtures could be accurately determined. The specimens were
saturated prior to shear using back pressure saturation techniques.

Original Research Objectives and Results

The main objective of the original (1991) research program was to
characterize the drained and undrained stress-strain behavior of normally
consolidated silts and clayey silts. To achieve this objective, extensive drained
and undrained triaxial tests were conducted on silt mixtures with varying clay
contents. The percentages of clay used in the silt mixtures were 0, 10, 30, and
50. Manufactured kaolinite and montmorillonite were mixed with the silt to
determine the effect of clay mineralogy on the stress-strain behavior of silt. The
effect of density or unit weight on the stress-strain behavior was investigated by
compacting the triaxial specimens at Standard Proctor relative compactions of
85, 90, 95, and 100 percent. The main conclusions regarding the behavior of
normally consolidated silts and clayey-silts are summarized below (Stark et al.

1991):

The shear behavior of silt is controlled by the percentage of clay and the clay
mineral in the soil. At low clay contents, the silt exhibits shear characteristics
similar to a sand, and at high clay contents, the shear behavior is similar to that
of a clay. The transition point from sand to clay behavior is a function of the
clay mineralogy and was found to be between 10 and 30 percent for the
kaolinite-silt mixtures and at or near 10 percent for the montmorillonite-silt
mixtures.

The effect of density or unit weight on the shear strength and stress-strain
parameters decreased as the clay content increased. At a low clay content (0
and 10 percent), increasing the Standard Proctor relative compaction from 85 to
100 percent resulted in a substantial increase in the shear strength and
hyperbolic stress-strain parameters. However, at high clay contents (30 and 50
- percent), there was only a small increase in the shear strength and hyperbolic
stress-strain parameters when the relative compaction increased from 85 to 100
percent. Therefore, there appears to be little benefit, in terms of shear strength
and stiffness, of specifying a field relative compaction greater than 90 percent if
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the clay content is greater than or equal to 30 percent. However, the test results
suggest that the volumetric strain may be reduced by 25 percent if the relative
compaction is greater than 90 percent.

At low (0 and 10 percent) clay contents, the kaolinite-silt mixtures exhibited
dilation even though the test specimens were normally consolidated. At high
(30 and 50 percent) clay contents, the volume change behavior was contractive.
Conversely, the montmorillonite-silt mixtures all exhibited a contractive volume
change behavior. Therefore, the volume change behavior during shear is a
function of the clay content and the clay mineralogy.

Effective confining pressures greater than 8 to 10 tsf were usually required to
obtain a normally consolidated condition.

Total stress and effective stress Mohr-Coulomb strength parameters can be
estimated for normally consolidated silts and clayey silts using the in situ water
content and unit weight and the data base described herein. The effective stress
friction angle for the kaolinite-silt mixtures ranged from 40 to 25 degrees and
from 40 to 14 degrees for the montmorillonite-silt mixtures. The effective
stress cohesion was measured to be zero for all of the mixtures. This also
indicates that the test specimens were in a normally consolidated condition.

Clay mineralogy, as well as percentage of clay, controls the shear behavior
of a silt deposit. The more active the clay mineral, the lower the modulus and
shear strength of the silt. In addition, increasing the activity reduces the

" percentage of clay required to reach the transition point between sand and clay

shear behavior.
Tables 2 through 7 can be used to estimate the drained and undrained shear

strength and hyperbolic stress-strain parameters of normally consolidated silts
and clayey silts using the in situ water content and dry unit weight.
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4 Laboratory Testing
Program Using

Structured/Cemented
Silt

Background

The main objective of the previous and current research was to characterize
the drained stress-strain behavior of naturally occurring structured/cemented
silt. To achieve this objective, extensive oedometer and drained triaxial
compression tests were conducted on undisturbed silt. The tests were conducted
using specimens trimmed in their field orientation and 90 degrees from the field
orientation. Both sets of tests were conducted on undisturbed structured/
cemented silt from the same location.

Silt Origin

A bluff containing Mississippi loess was located at WES (Figure 3). This is
the same bluff from which the silt used in the previous research was excavated.
The bluff stands at a nearly vertical slope as do many of the loess slopes in the
Vicksburg area. This fact does not correspond with the hyperbolic stress-strain
parameters and effective stress friction angles that were estimated from the
triaxial compression tests on the reconstituted, normally consolidated silt-clay
mixtures. Therefore, the natural structure/cementation of the loess appears to
result in a significantly higher shear strength and stiffness. During the sampling
and reconstituting of the silt in the previous (1991) study, all of the structure/
cementation was destroyed. Therefore, the shear strength and hyperbolic stress-
' strain parameters estimated using reconstituted specimens are likely to be lower
than the in situ parameters, as indicated by the presence of a nearly vertical
bluff. As a result, the main objective of this research is to investigate the effect
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of structure/cementation on the shear behavior and stiffness as characterized in
terms of the hyperbolic stress-strain parameters of naturally occurring
structured/cemented silt.

The Mississippi loess belt is approximately 70 to 120 miles wide, extending
eastward from the bluffs along the Mississippi River. Generally, the loess is
less than 10 feet thick except at the bluffs where it is up to 100 feet thick. The
bluff at WES where the loess samples were obtained is approximately 40 feet
high.

The Mississippi loess deposits were created by westerly winds carrying fine

-~ particles from the Mississippi River alluvial valley to its eastern uplands where

it was deposited. This deposition occurred during the late Pleistocene and early
Recent times.

Mississippi loess contains mainly silt and clay size particles. Scanning
electron microscope analyses reveal that the silt particles are subangular to
subrounded (Figure 4). The loess is a highly structured and/or cemented
material. Figure 5 is a scanning electron microscope photograph that illustrates
the cemented/strucured nature of the silt. Figure 6 presents a closeup of the
bonding or cementation between two silt particles. Finally, Figure 7 presents
plan and closeup views of the natural cementation. It is interesting to note that
the cementation forms two columns with a miniscus-like hole in the center. The
cementing agents in the loess are predominantly carbonates, iron salts, and clays
in various combinations (Krinitzsky and Turnbull 1967). It is assumed that the
carbonates were present at the time the sediment was first deposited. Local
migration of the carbonates probably occurred by means of groundwater or
capillary movements. This migration resulted in the concretions and tubules
that were found in the loess. Iron cementation is minor and largely
indeterminate, since it is usually a much less constituent than the carbonate and
clay (Krinitzsky and Turnbull 1967). The clay particles are evenly distributed
among the silt grains forming jackets or husks around the silt particles, and thus
holding them together. Another important aspect of the bonding attributed to
the clay is the binding force resulting from capillary attraction of soil moisture.
As a result, the capillary and clay bonding effects may vary appreciably with
changes in moisture content in the loess.
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Figure 4. Scanning Electron Microscope Photograph of Naturally
Occurring Sit (Magnification equals 1000 times)

Figure 5. Two Silt Particles Cemented Together in the Right Center of
the Photograph ( Magnification equals 1500 times)
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Figure 6. Closeup View of Cementation Joining Two Silt Particles
(Magnification equals 5000 times)

Figure 7. Plan and Closeup View of Natural Cementation
(Magnification equals 1500 times)
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Oedometer and triaxial compression test results will indicate that the
carbonate bonding is resistant to distilled water and provid es a stronger bond
than the clay/capillary bonds. This was concluded because laboratory saturated
specimens exhibited similar shear strength and compressibility behavior as
specimens tested at the natural water content. Laboratory saturation removed or

- reduced the capillary and clay bonds. Thus, the remaining bonding should be
attributed to the carbonates. Carbonates are not soluble in distilled water but
could be soluble when inundated with site-specific liquids. As a result, site-
specific testing should be conducted to investigate the permanence of the
carbonate bonding.

Silt Sampling and Index Properties

In August, 1991, Dr. Timothy D. Stark of the University of Illinois at
Urbana¥Champaign and Dr. Robert M. Ebeling of WES hand excavated two
undisturbed block samples of the loess. The blocks were excavated adjacent to
each other and therefore probably consist of similar material. The blocks are
approximately 1.5- by 1.5- by 1.5-ft and were taken to the University of Illinois
where they were waxed and stored in a moist room. As a result, these blocks

_ provide an excellent source of structured/cemented silt. One block was used for
tests on specimens trimmed in the natural direction, and the other was used to
obtain specimens trimmed 90 degrees from the field direction.

Hydrometer analyses revealed that the clay content of the light-brown loess is
approximately 10 to 12 percent. The percentage of clay is defined as the
material finer than 0.002 mm. Approximately 2 to 3 percent of the loess is fine
sand, shells, and organics particles which do not pass the U.S. Standard Sieve
No. 200 sieve. The grain size distribution of the structured/cemented silt is
labeled S/C in Figure 4. The grain size distributions for the previous research
project (Stark et al. 1994) involving reconstituted silt-clay mixtures are labeled
0 percent clay, 10 percent Kaolinite, 30 percent Kaolinite, and 50 percent
Kaolinite are also shown in Figure 8. The liquid limit, plastic limit, and
plasticity index of the naturally occurring structured/cemented silt are 30,
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nonplastic, and nonplastic, respectively. The silt classifies as a low plasticity
silt (ML) according to the Unified Soil Classification System. The natural
water content and total unit weight of the undisturbed silt are 19.9 percent and
113.9 pcf, respectively. The initial void ratio and degree of saturation of the
undisturbed silt are 0.793 and 68.3 percent, respectively. The specific gravity

 of solids of the silt was measured to be 2.71.

Clay mineralogy tests were conducted on the silt by Professor Stephen P.
Altaner of the Geology Department at the University of Illinois at Urbana-
Champaign. X-ray diffraction tests were conducted using air-dried and glycol
treated specimens. The bulk sample contains quartz (38 percent), potassium-
feldspar (3 percent), plagioclase feldspar (11 percent), carbonates (33 percent),
and clay minerals (15 percent). The carbonates consist of calcite (4 percent)
and dolomite (29 percent). These percentages are in agreement with the
following values reported by Lutton (1969) for loess in the Vicksburg area:
quartz (55 percent), feldspar (15 percent), carbonates (15 percent), and clay
minerals (15 percent). The clay minerals (materials smaller than 0.002 mm)
detected in the University of Illinois tests consist of smectite, illite, and
kaolinite. The percentages of each clay mineral, based on the material finer

~than 0.002 mm, are smectite (90 percent), illite (9 percent), and kaolinite (1

percent). X-ray diffraction tests on air-dried material indicate that the
predominant cation in the smectite mineral is calcium.

Chapter 3 Results of Previous Research Using Silt
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5 Oedometer Testing

Background

The main objective of this study is to characterize the drained shear strength
and stress-strain behavior of naturally occurring structured/cemented silts.
Oedometer tests were initially conducted to provide an important insight to the
triaxial shear behavior. For example, the effective preconsolidation pressure
and the effect of inundation can be determined from oedometer tests. This
information provides a significant insight to the shear behavior of structured/
cemented silts. As a result, oedometer testing was conducted prior to the
triaxial compression testing to gain an insight to the shear behavior and quality
of the structured/cemented silt samples.

Effect of Structure/Cementation on Compressibility

Figure 9 presents a comparison of results of oedometer tests on structured/

- cemented and reconstituted silt specimens. The structured/cemented silt was
obtained by trimming the specimen directly from an undisturbed block into a
rigid oedometer ring. The undisturbed specimen was not submerged prior to or
during the oedometer test, and thus was partially saturated. The one-
dimensional oedometer test was performed in accordance with ASTM (1993)
Standard D2435-80. Figure 9 shows that the structured/cemented specimen
yielded an effective preconsolidation pressure of approximately 20,000 psf.

The modified compression and modified recompression indices, obtained from
the axial strain-effective stress relationships, are estimated to be 0.132 and 0.01,
respectively. Figure 10 presents the void ratio-effective stress relationships for
the oedometer test on structured/cemented silt shown in Figure 9, which is
presented in terms of axial strain. The compression and recompression indices,
obtained from the void ratio-effective stress relationships, are estimated to be
0.26 and 0.017, respectively, and are presented in Table 8.
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Figure 9 also presents the results of an oedometer test on a reconstituted
specimen. The reconstituted specimen was obtained by compacting the
- remolded silt in a fixed oedometer ring. The remolded silt was obtained by
crushing the structured/cemented specimen after completion of the oedometer
test described in the previous paragraph. The silt was crushed using a mortar
and pestle. The remolded silt was mixed with distilled water to obtain the
natural water content. The silt was compacted directly into a rigid oedometer
ring at the natural water content of 19.9 percent and total unit weight of 113.9
pcf. A spatula was used to compact the silt so that the silt was not
overcompacted and thus not preconsolidated. The silt was compacted in two
lifts. The appropriate amount of soil was weighed and compacted to obtain the
natural total unit weight. The top of the first lift was scarified before the next
lift was placed to ensure an adequate bond between lifts. The one-dimensional
oedometer test was performed in accordance with ASTM ( 1993) Standard
D2435-80.

Figure 9 shows that the reconstituted specimen is more compressible than the
- structured/cemented specimen. The effective preconsolidation pressure is
approximately 8000 psf, which is significantly less than the structured/
cemented value of about 20,000 psf. The modified compression and modified
recompression indices for the reconstituted silt, obtained from the axial strain-
effective stress relationships, are approximately 0.11 and 0.018, respectively.
Figure 10 presents the void ratio-effective stress relationships for the oedometer
test on reconstituted silt shown in Figure 9, which is presented in terms of axial
strain. The compression and recompression indices, obtained from the void
ratio-effective stress relationships, are estimated to be 0.16 and 0.026,
respectively.

In summary, the structure/cementation of the natural silt results in a
significantly higher preconsolidation pressure and, thus, a stiffer and less
compressible material. The compression indices of both specimens are similar
in magnitude.

Chapter, 5 Oedometer Testing
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Effect of Inundation on Compressibility

Four oedometer tests were conducted to estimate the effect of soaking or
inundation on the stiffness and compressibility of structured/cemented silt. In
the "dry" tests, the specimen was trimmed directly from an undisturbed block of
silt into a rigid oedometer ring. The "dry" specimen was not inundated at any
time and was tested according to ASTM (1993) Standard D2435-80. The
"inundated" specimen was trimmed from the same undisturbed block near the
location of the "dry" specimen. The "inundated" specimens were tested
according to ASTM (1993) Standard D2435-80, except that the specimens were
soaked at a vertical effective stress of 2400 psf (Figures 11 and 12) and 23000
psf (Figures 13 and 14). The specimens were inundated by filling the chamber
surrounding the specimen container with distilled-deaired water. A vertical
effective stress of 2400 psf corresponds to the recompression range of the silt,
and a vertical effective stress of 23,000 psf exceeds the effective
preconsolidation pressure of approximately 20,000 psf, thus corresponding to
the virgin compression range.

Figure 11 shows that there is a negligible difference between the
compressibility of the "dry" and "inundated" specimens when inundation occurs
in the recompression range. Therefore, inundation of structured/cemented silt
in the recompression range does not significantly increase compressibility or
decrease the stiffness of the material. However, inundation in the virgin
compression range (Figure 13 or 14) results in an increase in axial strain at a
vertical effective stress of 23,000 psf. After inundation and an increase in
vertical effective stress, the silt exhibited a similar stress-strain behavior as the
"dry" specimen. Figures 12 and 14 present the void ratio-effective stress
relationships for the oedometer tests shown in Figures 11 and 13, respectively.

In summary, inundation of structured/cemented silt in the recompression
range does not significantly change the compressibility or stiffness. Therefore,
it was concluded that inundation does not damage or dissolve the natural
structure/cementation. However, soaking in the virgin compression range may
cause an increase in axial strain or a decrease in void ratio. This has important
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‘implications for construction and inundation in structured/cemented silts.
Table 8 presents a summary of the compressibility parameters for the inundated
structured/ cemented specimens.
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6 Triaxial Compression
Test Procedures

Preparation of Structured/Cemented Triaxial
Specimens

The 1.5-in.-diam, 3.0-in.-long structured/cemented triaxial specimens were
trimmed using a trimming lathe. One set of specimens was trimmed from a
block sample oriented in the field direction, and the other set was trimmed from
a block sample oriented 90 degrees from the field direction. A very fine wire
saw and a surgical razor blade were used to trim the structured/cemented silt.

A 3.0-in.-long miter box was used to obtain the final triaxial specimen after -
lathe trimming was completed. The water content and dry unit weight of each
test specimen were determined from the trimmings before the specimen was
inserted into the triaxial apparatus. A

The 1.5-in.-diam, 3.0-in.-long reconstituted triaxial test specimens were
fabricated using a mold. The remolded silt was obtained from the trimmings of
the structured/cemented specimen compacted at the same effective confining
pressure. Because the structured/cemented specimen trimming was conducted
in a moisture room, the water content of the trimmihgs was similar to the

" natural water content of the silt. Therefore, no water had to be added to

fabricate the reconstituted silt specimen. The remolded silt was compacted
directly into a 1.5-in.-diam. stainless steel mold at the natural water content of
19.9 percent and total unit weight of 113.9 pef. A spatula was used to compact
the silt so that the silt was not overcompacted, and thus not preconsolidated.
The silt was compacted in three lifts in a moisture room. The appropriate
amount of soil was weighed and compacted to obtain the natural total unit
weight. The top of each lift was scarified before the next lift was placed to
ensure an adequate bond between lifts. A 3.0-in.-long miter box was used to
obtain the final triaxial test specimen after reconstitution was completed. The
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water content and dry unit weight of each reconstituted specimen were
determined before the specimen was inserted into the triaxial apparatus.

Two triaxial cells with plexiglass containers were used for the testing. The
triaxial apparatuses were designed and fabricated at the University of Illinois.
The cells are connected to a volume change measurement device, which is read
manually. The porous stones at the tops and bottoms of the test specimens were
boiled for ten minutes before each test. Two membranes, i.e., prophylactics,
were. carefully rolled over each test specimen. To reduce the amount of air
trapped in the system, the membranes were rolled over the test specimens and
any wrinkles in either membrane were removed. Each membrane was secured
with two O-rings at the top and bottom of each specimen.

To promote drainage in the isotropically consolidated-drained (S) triaxial
tests, the specimens were wrapped in filter paper. Portions of the filter paper
were cut out to reduce the strength of the filter paper as described by Bishop
and Henkel (1962). (These slotted pieces of filter paper are sometimes referred

' to as Bishop's pajamas.) The appropriate strain rate for the isotropically

consolidated-drained (S) triaxial compression tests was determined using the
procedure described by Gibson and Henkel (1954) and the coefficient of
consolidation measured during consolidation of each test specimen.

Triaxial Compression Tests on Partially Saturated
Specimens

A series of isotropically consolidated-drained (ICD) triaxial compression tests
was conducted on horizontally and vertically trimmed undisturbed specimens at
the natural water content. The specimens were trimmed as previously described
and tested at the natural water content. Therefore, water was not introduced to
the specimen before, during, or after the tests. These tests were conducted at an
axial displacement rate of 0.2 mm/minute, which corresponds to an axial strain
rate of 1.7 percent/minute. The drainage valve to the specimen was closed
during the consolidation and shear phases of the tests. Though the drainage
valve to the specimens was closed, the tests were still considered drained

Chapter 6 Triaxial Compression Test Procedures




because the silt is highly permeable and the specimens were partially saturated.
As a result, no volume change information was obtained from the triaxial tests
on partially saturated specimens. A similar series of four ICD triaxial
compression tests was conducted on reconstituted specimens to investigate the
effect of structure/cementation on the stress-strain behavior of partially
saturated silts.

'In all of the triaxial compression tests conducted during this study, the cell
pressure and back pressure were applied using a constant pressure system that
utilizes mercury pots to generate pressure. This prevents any significant
variations in the cell and back pressures caused by variations in a compressor or
air pressure system. The deviator stress was applied using a Wykeham-
Farrance constant rate of displacement loading frame. The isotropically
consolidated-drained triaxial compression tests were performed in accordance
with the U.S. Army Engineer Laboratory Soils Testing Manual (Office 1970).

Triaxial Compression Tests on Saturated
Specimens

A series of ICD triaxial compression tests was conducted on horizontally and
vertically trimmed structured/cemented specimens after the specimens had been
saturated in the laboratory. The specimens were saturated to investigate the
effect of laboratory saturation on the stress-strain behavior of
structured/cemented silt. Distilled-deaired water was percolated through the
specimen under a hydraulic head of 1 ft, or 62.4 psf, for a period of twenty-
four hours. A confining pressure of 500 psf was applied to the specimen prior
to the saturation/percolation process.

Percolation of water through the specimen resulted in degrees of saturation,
measured after shearing, ranging from 90 to 99 percent using the hydraulic head
of 1 ft. Black and Lee (1973) and Bishop and Henkel (1962) concluded that the

~ desired degree of saturation should be greater than 90 percent for an ICD

triaxial compression test. After completion of the saturation process, the
desired consolidation pressure was applied. Upon equilibration, the specimen
was sheared to an axial strain of 20 percent. Four and three ICD triaxial tests
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were conducted on structured/cemented and reconstituted specimens,
respectively, to investigate the effect of laboratory saturation on the behavior of
silt.

The ICD triaxial compression tests on laboratory saturated specimens were
conducted at an axial displacement rate of 0.02 mm/minute, which corresponds
to an axial strain rate of 0.026 percent/minute. The drainage valve was open
during the consolidation and shear phases of the tests. As a result, volume
change information was obtained from the tests on laboratory saturated
specimens.

Chapter 6 Triaxial Compression Test Procedures




7 ICD Triaxial Compression
Tests on Partially
Saturated Specimens

Structured/Cemented Silt Specimens

Four isotropically consolidated-drained (ICD) triaxial compression tests were
conducted on partially saturated structured/cemented and reconstituted silt

- specimens. The specimens were not laboratory saturated, and thus were tested

at the natural water content of approximately 17 percent. Shearing commenced
after the specimens came to equilibrium under the applied effective confining
pressure or consolidation stress. Since the natural or in situ degree of saturation
is approximately 59 percent, no volumetric strain measurements were made
during these tests. The test results illustrate the effect of structure/cementation
and effective confining pressure on the drained stress-strain behavior of
naturally occurring silts. Figure 15 presents the deviator stress-axial strain
relationships from the ICD triaxial compression tests on partially saturated
structured/cemented silt. Figure 15 shows that the effective confining pressure
or consolidation stress (c'3.) ranged from 1000 to 11,520 psf.

Figure 15 also shows that the peak deviator stress and the deviator stress at
an axial strain of approximately 20 percent increases with increasing effective
confining pressure. The Mohr-Coulomb shear strength parameters were

- estimated for effective confining pressures ranging from 1000 to 11,520 psf

using either the peak deviator stress or the deviator stress at an axial strain of 20
percent. The resulting effective stress cohesion and friction angle were 950 psf
and 28 degrees, respectively.
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Reconstituted Silt Specimens

Figure 16 presents the deviator stress-axial strain relationships from the four
ICD triaxial compression tests on partially saturated, reconstituted specimens.
Figure 16 shows that the deviator stress at an axial strain of approximately 20
percent increases with increasing effective confining pressure. The Mohr-
Coulomb shear strength parameters were estimated using the deviator stress at
an axial strain of 20 percent. The resulting effective stress cohesion and friction
angle are O psf and 30 degrees, respectively. Therefore, the structure/
cementation results in a higher value of effective stress cohesion and a lower
value of friction angle than exhibited in the reconstituted specimens.

The tests on reconstituted specimens were conducted at the same effective
confining pressures as the tests on the structured/cemented silt specimens. Asa
result, the ICD triaxial compression test results from Figures 15 and 16 are
superimposed in Figures 17 through 20 for comparison purposes. Figures 17
and 18 present a comparison of the stress-strain relationships at effective
confining pressures of 1000 and 2160 psf, respectively. At effective confining
pressures of 1000 and 2160 psf, the stress-strain relationship of the
structured/cemented silt exhibits a pronounced peak strength and a post-peak

- strength loss. In addition, the structured/cemented silts are significantly stiffer

and stronger than the reconstituted silt. At a stress level between the confinig
pressures of 2160 and 5760 psf, the effects of structure/cementation diminish.
This is evident from the stress-strain relationship in Figure 19 which no longer
exhibits the post-peak behavior attributed to structure/cementation as shown in
Figure 18. Thus, as the effective confining pressure increases (Figures 18 and
19), the effects of structure/cementation are destroyed and the difference in
stiffness and maximum deviator stress decreases. Finally, at an effective
confining pressure of 11,520 psf (Figure 20), the structured/cemented and
reconstituted silt specimens exhibit similar stiffness and shear strength
characteristics.

In summary, the effective confining pressure can break or overcome the
structure/cementation of the undisturbed silt resulting in a reconstituted
behavior. This transition from structured/cemented behavior to reconstituted
behavior clearly has important implications for construction in naturally
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occurring silts. For example, if the proposed structure increases the applied
stress to a value less than the effective preconsolidation pressure, the
undisturbed silt will exhibit high shear strength and stiffness characteristics. If
the applied stress exceeds the effective preconsolidation pressure, the
undisturbed silt will exhibit shear strength and stiffness characteristics of a
reconstituted silt. This may lead to significant settlement and/or stability
problems.

Drained Hyperbolic Stress-Strain Parameters

The hyperbolic stress-strain parameters for the structured/cemented and
reconstituted silt specimens were obtained using the previously reported Mohr-
Coulomb shear strength parameters and the best geometric agreement between
measured and hyperbolic stress-strain relationships. The geometric agreement
was emphasized at axial strains of less than 5 percent to provide a reasonable
estimate of the initial tangent modulus. The hyperbolic stress-strain parameters
were obtained using the procedure recommended by Duncan et al. (1980) in
which the deviator stresses at 70 and 95 percent of the maximum deviator stress
are used to estimate the initial tangent modulus.

Figures 21 through 24 present the geometric agreement between the
measured and hyperbolic stress-strain relationships for the structured/cemented
silt specimens. The hyperbolic model provides a reasonable representation of
the measured deviator stress-strain relationships. Figures 21 and 22 illustrate
that the model is not capable of representing a post-peak behavior. Thus, at
effective confining pressures too low to overcome the effects of structure/
cementation, the model is applicable only to within 10 to 20 percent of peak
values. Figures 23 and 24 show that at effective confining pressures great
enough to overcome the effects of structure/cementation, the hyperbolic model
provides an excellent representation of the measured deviator stress-strain
relationship.

Table 9 presents the effective stress Mohr-Coulomb and hyperbolic stress-
strain parameters for the partially saturated, structured/cemented silt. The table
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shows that the modulus exponent is negative. Typically, the modulus exponent

is positive, which reflects an increase in stiffness or tangent modulus with
increasing effective confining pressure. However, the breaking or removal of
the structure/cementation with increasing confining pressure causes a decrease
in tangent modulus. This behavior is unique to structured/cemented soils and
should be incorporated into design decisions.

Figures 25 through 28 present the geometric agreement between the
measured and hyperbolic stress-strain relationships for the partially saturated
reconstituted silt. The:hyperbolic stress-strain model provides acceptable
agreement with the measured deviator stress-axial strain data for the four
effective confining stresses. This is attributed to the removal of the
structure/cementation during the reconstitution process. Figures 25 through 28
show that the hyperbolic model also cannot represent the small decrease in
deviator stress at large axial strains.

The hyperbolic parameters that provided the best geometric agreement for the
triaxial compression data at effective confining pressures of 2160 and 5760 psf
were initially estimated. These parameters were then varied to provide
reasonable agreement with the test data at effective confining pressures of 1000
and 11,520 psf. Therefore, the resulting hyperbolic parameters provide an
excellent representation at effective confining pressures between 1000 and
11,520 psf.

Table 9 presents the effective stress Mohr-Coulomb shear strength and
hyperbolic stress-strain parameters for the partially saturated reconstituted silt.
The hyperbolic stress-strain parameters for the reconstituted silt specimens differ
significantly from the parameters for the structured/cemented silt. The modulus
number, i.e., stiffness, of the structured/cemented silt is approximately fifteen
times higher than that of the reconstituted silt. In addition, the modulus
exponent is positive, which indicates that the tangent modulus increases with
increasing effective confining pressure.
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Anisotropy of Structured/Cemented Silt

Table 9 also presents the effective stress Mohr-Coulomb shear strength and
hyperbolic stress-strain parameters for partially saturated, structured/cemented silt
that was tested 90 degrees from the field orientation. It can be seen that the
nonfield-oriented silt exhibits similar Mohr-Coulomb shear strength parameters as
the field-oriented silt. However, the nonfield-oriented silt exhibits significantly
lower values of modulus number and exponent. In fact, the modulus number of
the field-oriented silt is approximately four times greater than that of the nonfield-

oriented silt (Table 9).

The modulus exponent value for the nonfield-oriented silt is -0.10 or nearly
zero. Therefore, the stiffness or tangent modulus does not decrease significantly
with increasing confining pressure. This means there is a smaller collapse of the
structure/cementation in the nonfield orientation. This reinforces the large
difference in the modulus numbers, which implies that the structure/ cementation is
anisotropic. The anisotropy results in a stiffer behavior in the vertical or field
direction. Clearly this anisotropic behavior should be incorporated into design

decisions involving structured/cemented silt.

Initial Stiffness from Hyperbolic Stress-Strain
Model

Table 10 presents the initial tangent modulus and the tangent modulus at an
axial strain of 0.5 percent for the structured/cemented silt tested in the field
orientation. The initial tangent is calculated using Equation (1) of the
hyperbolic stress-strain model, and the tangent modulus at an axial strain of 0.5
percent is estimated using Equation (4). To estimate the tangent modulus at an
axial strain of 0.5 percent, the deviator stress at 0.5 percent axial strain was
obtained from the hyperbolic stress-strain curve. The effective stress Mohr-
Coulomb shear strength and hyperbolic stress-strain parameters in Table 9 were
used in Equations (1) and (4) to estimate these tangent moduli. Table 11
presents the initial tangent modulus and the tangent modulus at an axial strain of
0.5 percent for the partially saturated, reconstituted silt.

Chapter 7 ICD Triaxial Compression Tests on Partially Saturated Specimens




'Jsd 000L JO ainssaid BuUILUOD BAI308Ye

ue 1e )jIS painliisuodal pajeinies Ajeiued jo sdiysuolyelel
ureljs-ssalls oljogqiadAy pue painseasw JO uosiedwo) ‘Gz ainbl4

0€

(%) ulelS [eIXy
G2 02 Sl Ok S 0

L ¥ T ! 1

)
d = O¢
}sd 000L =~"0 000L m.
2
|oPOW 2lj0gIedAH g
1 000¢ %
(0]
)]
7]
eleq 1se o}
leq isel 1 0o0g m.

_ _ _ _ . 0007

63

Chapter 7 ICD Triaxial Compression Tests on Partially Saturated Specimens




‘1sd Q9]¢ Jo ainssaid Bululjuod aAil08}e
ue je Jjis paniisuosal pajeinies Ajeiued jo sdiysuoleal
ules}s-ssalis oljoqiadAy pue painsesw Jo uosuedwo) ‘gz ainbl4

(%) urens jeixy
o€ 2 02 Gl v S 0

i ssd ool =P 000}

w,
- 000z 2
=
o
: oooe £
o
[opO 2ljoqiadAH @
: 1 ooor @
=
eleqd 1se|
I 1 000s

_ _ - : — 0009

Chapter 7 ICD Triaxial Compression Tests on Partially Saturated Specimens

64



Jsd 09/G Jo ainssaid BulUUOD BANDBYE
Ue le }jis palnlilsuodal pajelnies Ajened jo sdiysuorjels.
ulels-ssalls oljoqiadAy pue painseaw Jo uosuedwo) /g ainbi

(%) ulens [eixy
o€ G2 02 S oL G 0

- jsd 09.5 =8 0052
‘ O
(0]
<.
2
4
®
- 1005, &
[SPOW oljoqiadAH .mwv/
i 1 00001

_ _ _ ! ! 006Gl

65

Chapter 7 ICD Triaxial Compression Tests on Partially Saturated Specimens



1sd 02SH 10 ainssaid BuluuOd BAI}O8Y)S
ue 1e IS pelnlisuooal pajeinies Ajjeiled jo sdiysuolelal
uress-ssails dljogiedAy pue painsesw JO uosuedwod '8¢ ainbi4

(%) ureliS [eixy
o€ 52 02 Sl v G 0

I 1sd 026l = wmo 000S

00001

000S1
|leponN olloqiedAH

(Jsd) ssaug Jojeinad

00002

ejeq 1se)
_ — _ _ 00052

Chapter 7 ICD Triaxial Compression Tests on Partially Saturated Specimens

66



The data in Tables 10 and 11 are used in Figures 29 and 30 to quantify the
variation in initial tangent modulus and tangent modulus at 0.5 percent axial
strain, respectively, for structured/cemented and reconstituted silt. Figure 29
shows that the initial tangent modulus is significantly higher for the structured/
cemented silt at low effective confining pressures. However, as the effective -

confining pressure increases, the difference in initial tangent modulus decreases.

This indicates that at higher confining pressures, the effect of structure/
cmeentation is removed and the soil behavior undergoes a transition towards
that of a reconstituted material. Because the preconsolidation pressure of the
structured/cemented silt is approximately 20,000 psf, the structured/ cemented
and reconstituted silt are expected to approach a similar value of initial modulus
at confining pressures in excess of 20,000 psf.

The tangent modulus at an axial strain of 0.5 percent increases with
increasing effective confining pressure for the structured/cemented and
reconstituted silt (Figure 30). The tangent modulus for the structured/cemented
silt remains higher than that for the reconstituted silt at confining pressures
ranging from 1000 to 11,520 psf.

Appendixes A and B present the deviator stress-strain relationships for each
iaxial test conducted on the partially saturated structured/cemented and
reconstituted silt specimens, respectively.
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8 ICD Triaxial Compression
Tests on Saturated
Specimens

Laboratory Saturation of Silt Specimens

Silt specimens were saturated to investigate the effect of laboratory saturation
on the stress-strain behavior of structured/cemented silt. In addition, saturation
of the specimens allowed volume change information to be obtained. The
laboratbry saturation technique, referred to as hydrostatic saturation, involved
percolating distilled-deaired water through the specimen under a hydraulic head
of 1 ft, or 62.4 psf, for a period of 24 hr. A confining pressure of 500 psf
was applied to the specimen prior to the percolation/saturation process.

Hydrostatic Saturation of Structured/Cemented Silt
Specimens

Four and three isotropically consolidated-drained triaxial compression tests
were conducted on structured/cemented and reconstituted silt specimens,
respectively, after hydrostatic saturation. These test results illustrate the effect
of hydrostatic saturation on the structure/cementation of naturally occurring
silts. Figure 31 presents the deviator stress-axial strain relationships from the
ICD triaxial compression tests on structured/cemented silt. The specimens were
trimmed in such a manner that the tests were conducted in the same orientation
as the field. The effective confining pressure ranged from 1000 to 11,520 psf.
The deviator stress at an axial strain of approximately 20 percent increased with
increasing effective confining pressure. The Mohr-Coulomb shear strength
parameters were estimated using either the peak deviator stress or the deviator
stress at an axial strain of 20 percent. The resulting effective stress cohesion

“and friction angle are 0 psf and 33 deg, respectively. These parameters result in

a lower shear strength than the effective stress cohesion (950 psf) and friction
angle (28 deg) measured using partially saturated structured/cemented silt (Table
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9). For example, at a normal stress of 4000 psf, the partially saturated silt
exhibited a shear strength of 3080 psf, while the saturated silt exhibited a shear
strength of 2600 psf based on the reported Mohr-Coulomb shear strength
pararheters. Therefore, laboratory hydrostatic saturation using distilled-deaired
water appears to reduce the drained shear strength of the structured/cemented
silt by approximatley 15 percent.

This finding provides insight to the importance of the various cementation
mechanisms in Mississippi loess. The two major cementation mechanisms
appear to be carbonate and clay/capillary effects. Since the partially saturated
and saturated triaxial specimens generaly yield similar shear strength and
compressibility (Chapter 5) parameters, it was concluded that the carbonate
cementation is resistant to distilled water and is a stronger cementing agent than
the clay/capillary effects. The increase in moisture content from approximately
18 to 26 percent during laboratory saturation undoubtedly reduced the effect of
the clay/capillary bonding. Since the shear strength after laboratory saturation
is similar to the shear strength of the loess at the natural water content, the
importance of the clay/capillary bonding is assumed to be small. Therefore, the
difference between the shear strength of laboratory saturated reconstituted and
structured/cemented specimens is attributed to carbonate cementation.

The Mississippi loess tested during this investigation contains 33 percent
carbonates and 15 percent clay minerals. The large percentage of carbonate is
expected because the block samples were obtained from a depth of
approximately 25 ft in the exposed bluff. Krinitzsky and Turnbull (1967)
showed that the Vicksburg loess is calcareous if the carbonate has not been
removed by weathering. They concluded that weathering and moisture
infiltration remove the carbonates in the upper 5 to 6 ft. It should be noted that
natural precipitation is chemically different from distilled water and may
adversely affect the structure/cementation.

In summary, the block samples obtained for this study were below the depth
of weathering, and the weathered material on the exposed slope was removed
prior to sampling. Therefore, a large percentage of carbonates was present in
the block samples. The numerous concretions found in the loess during
trimming of the specimens, the measured 33 percent of carbonate in the loess,
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and scanning electron microscope analyses (Figures 4-7) confirm the presence
of carbonate bonding.

Krinitzsky and Turnbull (1967) showed that infiltration of rainwater and
weathering can remove the carbonate bonding. Therefore, site-specific testing
of loess should be conducted to evaluate the permanence of the carbonate
cementation under site-specific infiltration/inundation conditions. For example,
the effect of reservoir inundation caused by construction of a lock and dam
structure on the carbonate bonding should be investigated.

Hydrostatic Saturation of Reconstituted Specimens

Figure 32 presents the deviator stress-axial strain relationships from the three
ICD triaxial compression tests on hydrostatically saturated, reconstituted
specimens. This figure shows that the deviator stress at an axial strain of
approximately 20 percent slightly increases with increasing effective confining
pressure. The Mohr-Coulomb shear strength parameters were estimated using
the deviator stress at an axial strain of 20 percent. The resulting effective stress
cohesion and friction angle are O psf and 31 deg, respectively. These
parameters are also similar to the effective stress cohesion (0 psf) and friction
angle (30 deg) measured using partially saturated reconstituted silt (Table 9).
As expected, the hydrostatic saturation does not appear to significantly alter the
shear strength of reconstituted silt because the structure/cementation was
removed during the reconstitution process.

It is also important to compare the Mohr-Coulomb shear strength parameters
of the hydrostatically saturated, structured/cemented and reconstituted
specimens. The saturated structured/cemented silt exhibited an effective stress
cohesion and friction angle of 0 psf and 33 deg, respectively. The reconstituted
silt yielded an effective stress cohesion and friction angle of 0 psf and 31 deg,
respectively. Therefore, the structure/cementation was not significantly affected
by the laboratory saturation with distilled water, and thus the structured/
cemented silt exhibits higher shear strength parameters.

Chapter 8 ICD Triaxia! Compression Tests on Saturated Specimens
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In summary, the hydrostatic saturation in the laboratory did not significantly
alter the Mohr-Coulomb shear strength parameters of the structured/cemented
silt. Therefore, it appears that the naturally occurring structure/cementation,
primarily carbonate bonding, is not soluble in the presence of distilled water.
The oedometer test results discussed previously reinforce this conclusion.

Drained Hyperbolic Stress-Strain Parameters of
Saturated Silt

The hyperbolic stress-strain parameters for the saturated structured/cemented
and reconstituted silt specimens were obtained using the previously reported
Mohr-Coulomb shear strengths parameters and the best geometric agreement
between measured and hyperbolic stress-strain relationships. The geometric
agreement was emphasized at axial strains of less than S percent to provide a
reasonable estimate of the initial tangent modulus. The hyperbolic stress-strain
model provides a reasonable representation of the measured deviator stress

relationship for the saturated structured/cemented and reconstituted silt.

Table 12 presents the effective stress Mohr-Coulomb and hyperbolic stress-
strain parameters for the hydrostatically-saturated, structured/cemented silt.
Table 12 shows that the modulus exponent is negative. Typically, the exponent
is positive, which reflects an increase in stiffness or tangent modulus with
increasing effective confining pressure. However, the degradation of the
structure/cementation with increasing confining pressure causes a decrease in
tangent modulus. This behavior is unique to structured/cemented soils and
should be incorporated into design decisions.

Table 12 also presents the Mohr-Coulomb and hyperbolic stress-strain
parameters for the hydrostatically-saturated, reconstituted silt. The hyperbolic
stress-strain parameters for the reconstituted silt specimens differ from the
parameters for the structured/cemented silt. The modulus number of the
 structured/cemented silt is approximately nine times greater than the modulus
number of the reconstituted silt. This indicates that the structured/cemented silt
is significantly stiffer than the reconstituted silt. In addition, the modulus
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exponent of the reconstituted silt is positive and approximately one and one-half
times higher than the modulus exponent of the hydrostatically-saturated,
structured/cemented silt specimens. This indicates that the tangent modulus
increasés with increasing effective confining pressure. Therefore, there is no
degradation of the structure/cementation with increasing confining pressure in
the reconstituted specimens. The observed trends in modulus number and
modulus exponent between reconstituted and structured/cemented silt specimens
are expected because the structure/cementation was destroyed during the
reconstitution process.

Anisotropy of Saturated Structured/Cemented Silt

The effective stress Mohr-Coulomb shear strength and hyperbolic stress-
strain parameters for laboratory saturated, structured/cemented silt that was
tested 90 deg from the field orientation are presented in Table 12. The nonfield
-orientated silt exhibits similar shear strength parameters as the field oriented
silt. However, the nonfield-oriented silt again exhibits significantly lower
values of modulus number and exponent. The modulus number of the field-
orientd silt is approximately three times greater than the nonfield-oriented silt
(Table 12).

The modulus exponent value for the nonfield-oriented silt is again -0.10 or

~near zero. This means there is a smaller collapse of the structure/cementation in

the nonfield orientation than in the field orientation even after laboratory
saturation. Therefore, the anisotropy observed in the partially saturated,
structured/cemented silt appears to be not significantly changed by laboratory
saturation.

Hyperbolic Volume Change Parameters

Table 13 presents the volume change parameters for the laboratory saturated,
structured/cemented and reconstituted silt specimens. The hyperbolic stress-
strain model did not provide an excellent representation of the volumetric strain
relationship for the structured/cemented silt specimens. This is attributed to the
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structured-cemented silt exhibiting dilation during shear and the inability of the
hyperbolic model to represent specimen expansion. The volume change
parameters shown in Table 13 were obtained using the best geometric agreement
between measured and hyperbolic stress-strain relationships at low axial strains,
i.e., before the specimen exhibited dilation. In contrast to the results of the
structured/cemented specimens, the hyperbolic stress-strain model provided a
reasonable representation of the volumetric strain relationship for the
reconstituted specimens. The reconstituted specimens exhibited no dilation
during Shearing, which can be attributed to the absence of structure/cementation
in the reconstituted specimens.

Table 13 also presents the hyperbolic volume change parameters for the
nonfield-oriented, structured/cemented silt. The bulk modulus exponents are
_ similar between the field- and nonfield-oriented specimens. However, the
modulus number of the field-oriented silt is approximately six times greater than
the nonfield-oriented silt (Table 13). This is a greater difference than observed
between the modulus numbers (Table 12).

Figures in Appendixes C and D present the deviator stress and volumetric
strain relationships for each test conducted on the laboratory saturated
structured/cemented and reconstituted silt specimens, respectively. Also shown
in these figures is the volumetric strain relationship predicted by the hyperbolic
stress-strain model and the parameters presented in Table 13. As expected, the
structured/cemented silt specimens exhibited a negative bulk modulus exponent,
and the reconstituted specimens exhibited a positive exponent (Table 13). In
addition, the bulk modulus number of the structured/cemented silt is
approximately thirteen times greater than that for the reconstituted silt.
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9 ICD UNLOAD/RELOAD
TRIAXIAL TESTS ON
PARTIALLY SATURATED
SPECIMENS

UnIdadIReload Parameters

As noted previously, the unload/reload modulus is related to the effective
confining pressure by the unload/reload number and the modulus exponent
(Equation 8). The stress-strain relationship followed during unloading is steeper
than the relationship followed during primary loading, as shown in Figure 2.

- The resulting hysteretic behavior clearly illustrates the inelastic behavior of

soils. The same value of unload/reload modulus is used for both unloading and
reloading.

Four unload/reload triaxial compression tests were conducted to estimate the
unload/reload modulus of structured/cemented silt and the effect of
unloading/reloading on the degradation of the structure/cementation of silt. The
tests were conducted on partially saturated structured/cemented silt, i.e., silt at
the natural water content.

In the unload/reload triaxial tests, a partially saturated structured/cemented
specimen was loaded to approximately 50 percent of the maximum deviator
stress measured in a previous test at the same confining pressure (Figure 15).
The specimen was loaded to 50 percent of the maximum deviator stress using
the same axial displacement rate of 0.2 mm/minute or axial strain rate of 1.7
percent/minute. After reaching 50 percent of the maximum deviator stress, the
specimen was unloaded to a deviator stress of zero using an axial displacement
rate of 0.2 mm/minute. The specimen was then reloaded to 50 percent of the
maximum deviator stress and unloaded. This was repeated until the specimen
had been subjected to four unload/reload cycles. After the last unloading, the
specimen was reloaded to failure or an axial strain of 20 percent. Figures 33
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Figure 33. Results of ICD triaxial unload/reload test on
partially saturated structured/cemented silt at
an effective confining pressure of 1000 psf.
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Figure 34. Results of ICD triaxial unload/reload test on
partially saturated structures/cemented silt at
an effective confining pressure of 2160 psf.
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through 36 present the deviator stress-axial strain relationships from the ICD
unload/reload triaxial compression tests for effective confining pressures of
1000, 2160, 5760, and 11,520 psf, respectively. It should be noted that the
upper graphs in Figures 33 and 34 represent an enlargement of the data during
the unload/reload cycles. This enlargement was accomplished by plotting the
data for only axial strain less than 2 percent.

Figure 33 presents results of the ICD unload/reload triaxial test at an
effective confining pressure of 1000 psf. The specimen collapsed unexpectedly
upon loading to failure after the unload/reload cycles. The specimen collapsed
after application of a deviator stress of approximately 750 psf after the reload
cycles. Figure 34 shows that the strucured/cemented specimen at an effective
confining pressure of 2160 psf was loaded to failure without collapsing.
Therefore, it appears that the structure/cementation is more susceptible to
collapse at low confining pressures. This may explain the shallow (low
confining pressure) failures that occur rapidly in the natural loess bluffs near
Vicksburg.

The Mohr-Coulomb shear strength parameters were estimated for effective
confining pressures ranging from 1000 to 11,520 psf and either the maximum
deviator stress or an axial strain of 20 percent. The resulting effective stress
cohesion (c’) and friction angle (¢") are 700 psf and 29 degrees, respectively.

- The corresponding effective stress cohesion (c’) and friction angle (¢') measured

in conventional ICD triaxial compression tests on partially saturated
structured/cemented silt (Table 9) are 950 psf and 28 degrees, respectively.
Though the friction angles are similar, the value of effective stress cohesion
measured in unload/reload tests (700 psf) is slightly less than the cohesion (950
psf) measured in conventional ICD triaxial compression tests on partially

"saturated structured/cemented silt. Therefore, the unloading/reloading of the

specimen may have broken or ruptured some of the structure/cementation in the
silt. All of the structure/cementation was not removed during the four
unload/reload cycles because the resulting effective stress cohesion is greater
than the effective stress cohesion (¢’ = 0 psf) measured for the partially
saturated reconstituted specimens (Table 9). However, more than four
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unload/reload cycles and/or unload/reload cycles with a deviator stress greater
than 50 percent of the maximum deviator stress may result in additional
breakage or rupture of the structure/cementation in the loess.

Figures 37 and 38 present a comparison of the deviator stress-axial strain
relationships for unload/reload and conventional ICD triaxial compression tests
at effective confining stresses of 1000 and 2160 psf, respectively. Ata
confining stress of 1000 psf, the unload/reload cycles resulted in a peak deviator
stress approximately 50 percent lower than that resulting from the ICD triaxial

. compression test (Figure 37). At a confining stress of 2160 psf, the
unload/reload cycles did not significantly reduce the peak deviator stress (Figure
38). In summary, it appears that unload/reload cycles are more detrimental at
lower confining stresses.

The unload/reload modulus number was estimated using the hysteresis loops
in Figures 33 through 36. The value of E,, was estimated from the
unload/reload curves of each test, as in Figure 2. The variation of E,, is linear
when the logarithm of (E,/p,) and the logarithm (c's/p,) are plotted against
each other. The unload/reload modulus number equals (E,,/p,) when ¢'s/p,
equals unity and the unload/reload modulus exponent, n,,, is the slope of the
resulting line. Using this methodology, values of K, and n,, of 1175 and 0.3,
respectively, were estimated from the unload/reload data in Figures 33 through
36. The value of K, is approximately equal to the primary loading modulus
number (1200) of the partially saturated structured/cemented silt (Table 9).

- This ratio of K,,/K is slightly less than the recommended range of 1.2 to 3 times
suggested by Duncan et al. (1980). The difference is attributed to different soil
behavior during unload/reload cycles of structured/cemented soils.

Duncan et al. (1980) suggest that the value of n,, is similar to n, which is
the modulus exponent for primary loading for nonstructured soils. In fact, it is
assumed in the hyperbolic model that n equals n,, . If the unload/reload data in
Figures 33 through 36 and n equal to -0.4 (Table 9) are used, the corresponding
value of K, is 1180. In summary, the values of K, are similar, whereas the
values of modulus exponent differ significantly. Because the difference is
attributed to the structured/cemented nature of the silt, the conclusion that n
equals n,, appears unwarranted for structured/cemented soils. As a result, it is
recommended that at least one unload/reload test be conducted to estimate the
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least one unload/reload test be conducted to estimate the appropriate values of K,
and 7,, in structured/cemented materials instead of using K and » to estimate these
values. For soil-structure interaction analysis involving the Vicksburg silt, values
of K,, an n,, should be 1175 and 0.3, respectively.
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10 SUMMARY

The main objective of the research reported herein was to characterize the
drained stress-strain behavior of naturally occurring cemented/structured silts.
To achieve this objective, extensive laboratory testing was conducted on
reconstituted and structured/cemented silt specimens. The main conclusions
regarding the behavior of naturally occurring structured/cemented silts are
summarized below:

1.) The structure/cementation present in some naturally occurring silts results in
high shear strength and stiffness characteristics. The structure/cementation
frequently allows slopes to stand at vertical or nearly vertical angles. The
two major cementation agents in Vicksburg loess appear to be carbonates
and clay/capillarity. The carbonate cementation appears to provide the
greatest contribution of the overall structure/cementation.

2.) The structure/cementation results in effective preconsolidation pressures that
significantly exceed the effective overburden pressure and values measured
for remolded or reconstituted silt specimens.

3.) The isotropically consolidated-drained triaxial compression tests revealed
that the structure/cementation results in an effective stress cohesion that is
two times greater than the reconstituted value. This difference in effective
stress cohesion was observed for tests conducted on specimens at the natural
water content, i.e., partially saturated, and after laboratory saturation with
deionized water. The effective stress friction angle was measured to be 28
degrees for both structured/cemented and reconstituted silt specimens.

4.) If the effective confining pressure in a triaxial compression test exceeds the
effective preconsolidation pressure, the effects of the structure/cementation
are negated, and the silt exhibits a stress-strain behavior similar to that of a
reconstituted silt. The pressure at which there is a transition from
structured/cemented behavior to reconstituted behavior is an important
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design parameter. At applied stresses greater than the transition pressure,
settlement and/or stability problems may occur in structured/cemented silt.

5.) Inundation or saturation of the structured/cemented silt with deionized-
deaired water did not significantly alter the compressibility, shear strength,
or stress-strain behavior of the material. However, inundation in the virgin
compression range in an oedometer test resulted in a small increase in axial
strain, or a decrease in void ratio, without a change in vertical effective
stress. Therefore, it is concluded that inundation with deionized water does
not significantly damage or dissolve the carbonate cementation. Since the
shear strength after laboratory saturation is similar to the shear strength of
the loess at the natural water content, the importance of the clay/capillary
cementation was assumed to be small.

6.) The hyperbolic stress-strain parameters for the partially saturated
structured/cemented silt differ significantly from the reconstituted silt
values. The modulus number for the structured/cemented silt is three times
higher than the reconstituted value. This indicates a higher stiffness, and
thus a higher initial tangent modulus. However, the structured/cemented
modulus exponent is negative, which indicates that the tangent modulus
decreases with increasing effective confining pressure. This is attributed to
the breakage or removal of the structure/cementation at higher confining
pressures. The laboratory saturated structured/cemented silt exhibited a
similar modulus number as the laboratory saturated reconstituted silt, but the
modulus exponent was negative and approximately one-third of the
reconstituted value.

7.) Table 9 can be used to estimate the effective stress Mohr-Coulomb shear
strength and hyperbolic stress-strain parameters of structured/cemented silts
at their natural water content. Table 12 can be used to estimate the same
parameters for structured/cemented silts saturated with deionized water.

8.) ICD triaxial compression tests were conducted on structured/cemented
specimens oriented 90 degrees from the field orientation. The nonfield-
oriented silt exhibited similar Mohr-Coulomb shear strength parameters as
the field-oriented silt. However, the nonfield-oriented silt exhibited
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significantly lower values of modulus number and exponent. Therefore, the
stiffness of structured/cemented silts is anisotropic. This anisotropy should
be considered in soil-structure interaction analysis.

9.) The average unload/reload modulus number of the partially saturated
struétured/cemented silt is 1175, which is similar to the modulus number of
the partially saturated structured/cemented silt. However, the values of
modulus exponent differ significantly. As a result, it is recommended that
at least one unload/reload test be conducted on structured/cemented
materials to estimate the unload/reload modulus number and exponent
instead of assuming that the values are equal to the primary loading values.

10.) The four unload/reload cycles were initiated at a deviator stress
corresponding to 50 percent of the maximum deviator stress in an ICD
triaxial compression test. The effective stress cohesion and friction angle
measured after the four unload/reload cycles were slightly lower than the
values measured in conventional ICD triaxial compression tests.
Therefore, the unload/reload cycles may have broken or ruptured some of
the structure/cementation in the silt. If more than four unload/reload cycles
and/or a deviator stress greater than 50 percent is used, the structure/
cementation may undergo additional damage. As a result, site-specific
testing of structured/cemented loess should be conducted to investigate the
permanence of the structure/cementation under site infiltration/inundation
and unload/reload conditions.
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Appendix A

Results of ICD Triaxial Compression
Tests on Partially Saturated
Structured/Cemented Silt
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Appendix B

Results of ICD Triaxial Compression
Tests on Partially Saturated
Reconstituted Silt
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'Results of ICD Triaxial Compression
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Figure C-1. Results of ICD triaxial compression tests on hydrostatically saturated structured/cemented
silt at an effective confining pressure of 1000 psf.
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